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Accurate recognition of patients with Alzheimer’s disease (AD) or mild cognitive
impairment (MCI) is important for the subsequent treatment and rehabilitation. Recently,
with the fast development of artificial intelligence (AI), AI-assisted diagnosis has been
widely used. Feature selection as a key component is very important in AI-assisted
diagnosis. So far, many feature selection methods have been developed. However,
few studies consider the stability of a feature selection method. Therefore, in this
study, we introduce a frequency-based criterion to evaluate the stability of feature
selection and design a pipeline to select feature selection methods considering both
stability and discriminability. There are two main contributions of this study: (1) It
designs a bootstrap sampling-based workflow to simulate real-world scenario of feature
selection. (2) It develops a decision graph to determine the optimal combination
of supervised and unsupervised feature selection both considering feature stability
and discriminability. Experimental results on the ADNI dataset have demonstrated the
feasibility of our method.
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INTRODUCTION

Alzheimer’s disease (AD) (Xiao-Cong et al., 2018; Hou et al., 2020; Mishra and Li, 2020; Subasi,
2020; He et al., 2022) is a degenerative disease of the central nervous system, which is clinically
manifested as progressive memory impairment, cognitive dysfunction, language dysfunction, and
personality change, etc. AD has a serious impact on the lives of patients, but also brings a heavy
economic burden to patients’ families. At present, the research progress of AD is slow, and the
disease factors cannot be accurately determined. It is usually found at an advanced stage, and
even treatment will not produce a better therapeutic effect. Therefore, the early diagnosis of AD
is very critical, which can effectively inhibit the development of the disease, and even avoid the
occurrence of clinical symptoms by taking timely treatment. Mild Cognitive Impairment (MCI) is
considered as an intermediate state between health and AD. In patients with MCI, the probability
of progressing to AD is about 10–15% (He et al., 2022). Therefore, if patients with MCI can be
effectively identified and actively intervened, it is of great significance for the control of AD.

With the rapid development of artificial intelligence (Jiang et al., 2020; Xia et al., 2020; Zhang
et al., 2020a,b, 2021a,b, 2022), intelligent models are widely used in MCI or AD recognition.
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Kloppel et al. (2008) input gray matter features of brain
images of AD patients into linear support vector machines
(SVM), so as to apply the trained SVM to clinical studies.
Ashburner and Friston (2000) applied morphometric methods to
the diagnosis of AD, which spatially normalized high-resolution
images of all subjects into the same stereotactic space. Then,
gray matter was separated from the spatially normalized images
and data smoothing was performed on them. Voxel parameter
test statistics were performed on the two groups of smoothed
gray images to improve the uneven intensity of the brain artifact
images. Hinrichs et al. (2009) also proposed an AD recognition
framework based on the smoothness of three-dimensional image
coordinate space. It directly integrates the spatial relations of
voxels into the learning framework and does not require image
preprocessing information of other modes, thus automatically
classifying subjects according to structural or functional imaging
features. In addition, MCI was associated with changes in cortical
morphology, such as cortical thickness, sulcus depth, surface
area, gray matter volume, and mean curvature in different brain
regions. These features have been shown to have a specific
neuropathological and genetic basis. However, most methods
have focused on univariate prediction models, and cortical
features are usually isolated. Therefore, Li et al. (2014) used a
multivariate approach to study the abnormalities of multiple
cortical features in patients with mild cognitive impairment,
and identified subtle patterns of changes in cortical anatomical
structure through a classification model. Liu et al. (2013) used
non-linear global data structure to map multivariable MRI data
such as regional brain volume and cortical thickness into a low-
dimensional local linear space through local linear embedding
method, and trained a disease classifier by embedding brain
features to predict whether MCI would be transformed into AD
in the future. Möller et al. (2016) took the voxel values extracted
from the voxel data as the original feature data, and proposed a
feature selection method to apply to the original feature vector,
so as to reduce the dimension of the original feature vector to
a low-dimensional space and carry out the next classification
task. From the above-mentioned studies, we can summarize the
general process of MCI/AD recognition based on intelligent
model, as shown in Figure 1. From Figure 1, it can be found
that the general process of MCI/AD recognition contains four
components, preprocessing, feature extraction, feature selection,
and prediction. Preprocessing aims to process the original images
including registration, standardizing and smoothing. Feature
extraction aims to extract original features from the images
after preprocessing. Feature selection aims to select discriminant
features from the original feature set. Prediction aims to build
a classification model to recognize MCI or AD patients. In the
phase of prediction, based on the selected features, a prediction
model is established for MCI/AD recognition.

From Figure 1, it can be found that feature selection is a
key phase in the process of MCI/AD recognition. The goal
of feature selection is to select discriminant features with low
relevance between each other and high relevance to the outcome.
In recent 2 years, some excellent feature selection work has
emerged in the field of medical images. For example, Demir and
Akbulut (2022) proposed a new residual- convolutional neural

network to extract deep features from MRI images. Mainenti
et al. (2022) proposed a radiomics-based pipeline to enhance
MRI-based risk stratification in patients with endometrial
cancer. Although previous studies have achieved great success
in feature selection, feature discriminability is often the first
important factor and feature stability is always omitted. In
this study, first of all, feature stability, variance, and pairwise
correlation were analyzed. Then, the least absolute shrinkage and
selection operator (LASSO) and recursive feature elimination
(RFE) were employed to search for the optimal feature set
(Mainenti et al., 2022).

In this study, we focus on feature selection because few
studies consider both the stability and performance of feature
selection so far, which are two key factors for the classification
phase. The main contributions cover two aspects. The first one
is that we introduce a frequency-based criterion to evaluate
the stability of a feature selection method. The second is
that we propose a bootstrap-based flow chart and a decision
graph to select the best combination of supervised and
unsupervised feature selection methods. The following sections
are organized as follows. Section “Data and Methods” presents
the data we used and the methods we proposed. Section
“Results” reports the experimental results, section “Discussion”
discusses the experimental results and the last section concludes
the whole study.

DATA AND METHODS

Data
In this study, we select 103 patients with MRI and PET from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) as
our datasets. ADNI is a 5-year public partnership sponsored
by several institutes, companies, and non-profit organizations
(Zhang et al., 2021b). Owning to the original images cannot
be directly used for our study, we set up a data preprocessing
pipeline, which contains three main steps. Firstly, each subject in
ADNI contains 96 PET images. Statistical parametric mapping
(SPM) (Muzik et al., 2000) is used to fuse these PET images to
construct a 3-D one which has brain spatial information and the
feature information between tissue structures are also retained.
In addition, motion correction is performed due to head motion.
Secondly, the MRI image and PET image of each subject are
registered, and affinely aligned. In the third step, the average
template data generated is used to spatially normalize all PET
images to the standard MNI space. PET images are also smoothed
(8 mm Gaussian) to avoid the influences caused by noises. The
AAL (automated anatomical atlas) (Rolls et al., 2020) which is
available as a toolbox1 for SPM is used as a template to extract
original features from PET images. Based on AAL, the brain
is segmented into 116 regions, and we select 90 regions from
the cerebrum for feature extraction. To be specific, firstly, the
PET images are resampled to the same size as the AAL template
so that each region is in correspondence spatially. The size of
AAL template is 61 ×73 ×61. Then we extract average intensity

1http://www.gin.cnrs.fr/AAL
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FIGURE 1 | General process of MCI/AD recognition.
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FIGURE 2 | Flow chart for stability evaluation.

values from all regions of PET images as original features for our
proposed classification model.

Methods
Stability Evaluation Metrics
In this study, we use a frequency-based criterion to measure
the stability of a feature select method (Nogueira et al., 2017).
For clarity, suppose we have a feature selection method 8 and
a d-dimensional dataset X. The feature selection method is
performed on the d-dimensional dataset X to select discriminant

features. The feature selection process is repeated M times by
a bootstrap strategy. Then we can define a binary matrix Z, as
shown in (1) to indicate the feature selection results of M tries,

Z =


z11 z12 ... z1d
z21 z22 ... z2d
... ... ... ...

zM1 zM2 ... zMd

 (1)
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In Z, each row represents one try of feature selection. In each
row, zij = 1(i = 1, 2, ...,M, j = 1, 2, ..., d) represents that the
j-th feature is selected in the i-th try; otherwise, the j-th feature is
not selected. Based on the binary matrix Z, the stability of feature
selection method 8 in terms of the frequency-based criterion can
be defined as:

Stability(Z) = 1−
1
d

∑d
f=1

[
M

M−1 ( 1
M

∑M
i=1 zif )(1− 1

M
∑M

i=1 zif )
]

1
M

∑M
i=1

∑d
f=1 zif

d (1−
1
M

∑M
i=1

∑d
f=1 zif

d )
(2)

From (2), we can see that Stability(Z) ranges from 0 to 1, the
greater the value, the better the stability.

Stability Evaluation Workflow
In this study, we use a supervised feature selection method to
reduce features irrelative to the outcome, and an unsupervised
feature selection method to reduce redundant features. To
evaluate the stability of feature selection, a bootstrap sampling-
based flow chart is established, which is shown in Figure 2.
Firstly, the AD dataset is split into the training set (70%) and
the testing set (30%) by bootstrap sampling. Then supervised and
unsupervised feature selection is performed on the training set
to select discriminant features. The testing set is updated with
the selected features. Finally, a Ridge regression model is trained
based on the selected features. The bootstrap sampling is repeated
M times so that the matrix Z in (1) can be obtained. Based on
Z, we can use (2) to evaluate the stability of the supervised and
unsupervised feature selection methods we used.

Decision Graph for Feature Selection
In Li et al. (2017), a feature selection package was shared
which contains 33 different kinds of supervised and unsupervised
feature selection methods. In this study, we aim to choose a
best supervised and unsupervised combination from this package
for AD diagnosis. First of all, we set up an initial exclusion
criterion to select a part of supervised and unsupervised feature
select methods from the package provided by Li et al. (2017).
The exclusion criterion states: (1) if prediction performance
in terms of AUC of a feature selection method is lower than
0.5, the method is excluded. (2) If the running time of one
try of a feature selection method is more than 30 min, the
method is excluded. These exclusion criteria are defined for two
reasons. The first is that if the prediction performance of the
feature selection method is lower than 0.5, it indicates that the
prediction performance of the method is close to the randomness
level. Second, if the running time of a feature selection method
exceeds 30 min, it will exceed the normal tolerance range when
the training set size is not large. With the exclusion criterion,
we finally select F score (denoted as S1:), T Score (denoted
as S2), ReliefF (denoted as S3), and Fish Score (denoted as
S4) as supervised feature selection methods, and Lap_score
(denoted as U1), spectral feature selection (SPEC, denoted as
U2), Monte Carlo feature selection (MCFS, denoted as U3), non-
negative discriminative feature selection (NDFS, denoted as U4),
unsupervised discriminative feature selection (UDFS, denoted as
U5), and Person_score (denoted as U6) as unsupervised feature

TABLE 1 | All combinations of supervised and unsupervised feature
selection methods.

Combination name Name of supervised
method

Name of unsupervised
method

S1U1 F score Lap_score
S1U2 SPEC
S1U3 MCFS
S1U4 NDFS
S1U5 UDFS
S1U6 Person score
S2U1 T score Lap_score
S2U2 SPEC
S2U3 MCFS
S2U4 NDFS
S2U5 UDFS
S2U6 Person score
S3U1 ReliefF Lap_score
S3U2 SPEC
S3U3 MCFS
S3U4 NDFS
S3U5 UDFS
S3U6 Person score
S4U1 Fish score Lap_score
S4U2 SPEC
S4U3 MCFS
S4U4 NDFS
S4U5 UDFS
S4U6 Person score

selection methods. Therefore, we have 24 combinations, i.e.,
S1U1, S1U2,. . . , S4U6, as shown in Table 1. Secondly, as we
stated before that both performance and stability are important
for Alzheimer’s disease diagnosis.

Based on Figure 2, we can generate the matrix Z. Thus,
we can use (2) to evaluate the stability of the supervised and
unsupervised feature selection methods we used. Therefore, we
design a decision graph, as shown in Figure 3, to determine
the best combination of the supervised and unsupervised feature
selection methods.

RESULTS

The decision graph of all combinations for MRI features is shown
in Figure 4. It is observed that the combination S2U6 wins the
best in terms ofAUC∗Stability, which means that the combination
of T Score (supervised feature selection method) and Person
Score (unsupervised feature selection method) performs better
than other combinations in terms of both AUC and stability.
Therefore, the supervised feature selection method T Score and
the unsupervised feature selection method Person Score will be
selected as the feature selection methods for modeling.

The decision graph of all combinations for PET features is
shown in Figure 5. Similar to Figure 4, it is observed that
the combination S1U1 and S4U6 wins the best. Therefore, the
combination F score + Lap score or the combination Fish Score +
Person Score will be selected for the following phase of modeling.

From Figures 4, 5, it can be found that this is no combinations
that always perform best. Our method is case-dependent, which
means that it provides decision support for users.
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FIGURE 3 | Decision graph for feature selection.

FIGURE 4 | Decision graph for MRI features.

DISCUSSION

In this study, we have 103 subjects, for both MRI and PET,
the feature dimension of each subject is 93, which is near to
the number of subjects. When classification models are applied
to the high-dimensional data, a critical issue is known as the
curse of dimensionality, which refers to the phenomenon that
data becomes sparse in high-dimensional space may occur (Li
et al., 2017). Therefore, feature selection plays a very significant
role in the recognition of AD or MCI. So far, many feature
selection methods have been successfully applied in the field
of medical image-based diagnosis. For example, in Salvatore
et al. (2015), employed PCA (principle component analysis)
to select discriminant features from the density maps of WM
(white matter) and GM (gray matter) as input of SVM for
AD recognition. In Liu et al. (2013), employed LLE (local
linear embedding) as the unsupervised feature reduction method
to reduce features from the space of multivariate regional

brain volume and cortical thickness MRI to a locally low-
dimensional linear space while maintaining the global non-
linear data structure. Then, the reduced brain features in
the low-dimensional space were used to train the prediction
model. Unlike Liu et al. (2013) and Salvatore et al. (2015) in
Beheshti et al. (2015) proposed a filter-based supervised feature
reduction method containing three main steps. First of all, feature
extraction was carried out by using the voxel clusters that are
detected by the voxel-based morphometric (VBM) on sMRI
and the voxel values as the volume of interest (VOI). Secondly,
the probability distribution function of the VOI was employed
to represent the statistical information of the respective high-
dimensional structural MRI samples. Thirdly, the final selected
features were employed to train a SVM classifier to perform
the AD recognition task. In Nir et al. (2015) extracted DTI-
based features and proposed a tractography-based model to
recognize AD and MCI. First of all, the authors used tractography
and clustering techniques to locate and organize fibers into 18
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FIGURE 5 | Decision graph for PET features.

fiber bundles. Secondly, the authors computed density maps
to quantify the number of fibers passing through each voxel
and used the shortest path graph search to reduce the fiber
bundles based on maximum density path (MDP) so that the
fiber bundles can be expressed in a compact and low-dimensional
space. Thirdly, the diffusivity measures of fractional anisotropy
(FA) and MD computed along all the registered across subjects
(MDPs) were selected as the features to train an SVM classifier.
Feature selection methods in this category can be characterized
as making use of the global or local statistical information. In
De Martino et al. (2008) employed multivariate feature selection
to select features to model functional MRI spatial patterns. To
be specific, the authors employed RFE combined with an SVM
classifier (REF-SVM) to reduce the irrelevant voxels recursively.
Similarly, in Wee et al. (2011), based on DTI images, Wee et al.
proposed a framework for MCI recognition. In this framework,
the original features come from the anatomical regions, and
REF-SVM was also used to reduce the original feature set.

Although different kinds of feature selection (reduction)
methods have been widely used for AD and MCI recognition,
an important thing that is not fully considered is the
stability of the feature selection methods. In practice, we
expect that the selected feature selection method can maintain
robustness when training data changes slightly. Therefore,
in this study, we introduce a frequency-based criterion to
evaluate the stability and design a pipeline to select feature
selection methods considering both stability and discriminability.
Experimental results shown in Figures 4, 5 indicate that the
proposed pipeline works well and can help us to determine
the best combination of feature selection methods. That is
to say, the proposed criterion AUC∗Stability can find the
optimal combination of supervised and unsupervised feature
selection methods.

CONCLUSION

In this study, we introduce a frequency-based criterion to
evaluate the stability of feature selection and design a pipeline
to select feature selection methods considering both stability and
discriminability.
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